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Abstract

We establish dimensional thresholds for dot product sets associated with com-

pact subsets of translated paraboloids. Specifically, we prove that when the di-

mension of such a subset exceeds 5
4 “ 3

2 ´ 1
4 in R3, and d

2 ´ 1
4 ´ 1

8d´4 in Rd for

d ě 4, its dot product set has positive Lebesgue measure.

This result demonstrates that if a compact set in Rd exhibits a paraboloidal

structure, then the usual dimensional barrier of d
2 for dot product sets can be

lowered for d ě 3. Our work serves as the continuous counterpart of [1], which

examines the finite field setting with partial reliance on the extension conjecture.

The key idea, closely following [1], is to reformulate the dot product set on the

paraboloid as a variant of a distance set. This reformulation allows us to leverage

state-of-the-art results from the pinned distance problem, as established in [6] for

d “ 2 and [2] for higher dimensions. Finally, we present explicit constructions

and existence proofs that highlight the sharpness of our results.
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1 Introduction

1.1 Background knowledge

The study of geometric measure theory has led to many intriguing problems at the

intersection of analysis and geometry. One of the fundamental questions in this field

is Falconer’s distance problem, which concerns the relationship between the Hausdorff

dimension of a set in Rd and the Lebesgue measure of its distance set. First posed

by Kenneth Falconer in 1985, this problem remains a central open question in fractal

geometry and additive combinatorics. In this introduction, we provide an overview of

the key concepts needed to understand Falconer’s distance problem, including Hausdorff

dimension, Frostman’s lemma, energy integral, and the formulation of the problem

itself. We also briefly mention recent advancements.
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1.1.1 Hausdorff dimension and measure

A fundamental concept in fractal geometry is the Hausdorff dimension, which general-

izes integer dimensions to non-integer values and provides a fine-grained measurement

of irregular sets. The s-dimensional Hausdorff measure of a set E Ă Rd is defined as

Hs
pEq “ lim

δÑ0
inf

#

ÿ

i

diampUiq
s : E Ă

ď

i

Ui, diampUiq ă δ

+

.

An essential property of the Hausdorff measure is its monotonicity: if HspEq ą 0,

then for any t ă s, HtpEq “ 8. Conversely, if HspEq ă 8, then for any t ą s,

HtpEq “ 0. This motivates the definition of the Hausdorff dimension:

dimH E “ supts : Hs
pEq “ 8u “ infts : Hs

pEq “ 0u.

One way to understand Hausdorff dimension analytically is through energy integrals,

which link dimension estimates to potential-theoretic integrals. The intuition behind

this is that the decay of Fourier transforms of measures can provide insights into the

dimensionality of sets. This leads naturally to Frostman’s lemma, which provides a

useful characterization of Hausdorff dimension. We will see the above in the following

subsubsections.

1.1.2 Frostman’s lemma and energy integral

Frostman’s lemma states that the existence of a measure satisfying a certain decay

condition is equivalent to the positivity of the Hausdorff measure at a given dimension.

Lemma 1.1 (Frostman’s lemma). Let E Ă Rd be a compact set. Then HspEq ą 0 if

and only if there exists a probability measure µ supported on E such that

µpBpx, rqq ď Crs for all x P Rd, r ą 0.

Remark. A probability measure µ satisfying the above condition is called an s-dimensional

Frostman measure.

A key tool in geometric measure theory is the energy integral, which provides an

analytic way to estimate dimension. The s-energy of a measure µ supported on E Ă Rd

is given by

Ispµq “

ż ż

dµpxqdµpyq

|x ´ y|s
.

Proposition 1.2. 1 If µ is a probability measure that has compact support such that

µpBpx, rqq ď Crs for all x P Rd and for all r ą 0, then Itpµq ă 8 for any t ă s.
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2 Conversely, if µ is a probability measure with compact support and is such that

Ispµq ă 8, then there exists another probability measure ν satisfying νpXq ď 2µpXq

for all sets X, and the s-dimensional Frostman condition:

νpBpx, rqq ď Crs for all x P Rd, and for all r ą 0.

With the above lemma and proposition, we have the following corollary:

Corollary 1.3. If E is a compact subset of Rd, then

dimH E “ supts ą 0: D probability measure µ with Ispµq ă 8u

“ supts ą 0: D s-dimensional Frostman measure supported on Eu.

The importance of this corollary is that we can now study the Hausdorff dimension

using Frostman measures and the energy of a measure.

1.1.3 Harmonic analysis in geometric measure theory

Harmonic analysis provides a powerful framework for studying energy estimates. The

key insight is that the energy integral can be rewritten in Fourier space as

Ispµq “ Cs,d

ż

|pµpξq|
2
|ξ|

s´ddξ,

where Cs,d “
Γp d´s

2
qπs´d{2

Γp s
2

q
is a constant. This follows from the observation that the

Fourier transform of |x|´s is Cs,d|ξ|s´d. Using Plancherel’s theorem and the fact that

convolution in the spatial domain corresponds to multiplication in the Fourier domain,

one can intuitively see why this formulation naturally arises. In fact, the expression for

the energy integral in Fourier form requires more rigorous justification, which can be

found in Wolff’s notes [9].

This connection between potential theory and Fourier analysis plays a central role

in modern approaches to Falconer’s distance problem.

1.1.4 Falconer’s distance problem: a brief overview

For a compact set E Ă Rd, the distance set is defined as

∆pEq “ t|x ´ y| : x, y P Eu.

Falconer proved that dimH E ą d`1
2

can imply that L1p∆pEqq ą 0 and conjectured that

if dimHpEq ą d
2
, then L1p∆pEqq ą 0. While this remains unresolved, there have been

significant advances.

For d “ 2, it is known that if dimHpEq ą 5
4
, then ∆pEq has positive measure. For

d ě 3, the threshold is currently d
2

` 1
4

´ 1
8d`4

. These improvements rely on advanced

Fourier analytic techniques, such as decoupling methods, refined energy estimates, and

incidence geometry.
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1.2 Dot product on paraboloid in finite field setting

Motivated by the distance problem, many mathematicians have studied its variants,

such as simplex configurations, dot products, and other geometric structures. Addi-

tionally, imposing certain structural constraints on compact sets has led to improved

exponent thresholds ensuring the existence of a given configuration. Moreover, these

configuration problems have been investigated not only in the Euclidean setting but

also in the finite field setting. For example, Che-Jui Chang, Ali Mohammadi, Thang

Pham, and Chun-Yen Shen proved the following result in [1]:

Theorem 1.4. 1. Let E be a subset of Pd Ă Fd
q where d, q ” 3 p mod 4q and q is a

prime power. Assume the extension conjecture

}pfdσqq}
L

2d`2
d´1 pFd´1

q ,dcq
ď C}f}L2pSr,dσq ,

holds for any Sr :“ tx “ px1, ¨ ¨ ¨ , xd´1q : x2
1 ` ¨ ¨ ¨ ` x2

d´1 “ ru Ă Fd´1
q , then

|ΠpEq| " q whenever |E| " q
d
2

´ 1
2d .

2. Let E be a subset of P3 Ă F3
p where p ” 3 p mod 4q and p is a prime. Then

|ΠpEq| " p whenever |E| " p
3
2

´ 1
4 .

Notably, the extension conjecture has been proven for d “ 2, thereby completing

the proof for the d “ 3 case in the first part and fully validating the second part.

In [1], the authors leveraged the geometry of the paraboloid to reduce the problem

to a distance problem in a lower-dimensional vector space. However, key differences

exist between the discrete and continuous settings. For instance, in the discrete case,

they applied combinatorial counting arguments and the Cauchy-Schwarz inequality to

obtain the estimates:

|ΠpEq| ě
|E|4

|MpEq|
,

and

|ΠpEq| ě
|E|3

|DpEq|
,

where

MpEq “ tpx, y, z, wq P E4 : x ¨ y “ z ¨ wu

and

DpEq “ tpx, y, zq P E3 : x ¨ y “ x ¨ zu.

Although such estimates are crucial in the discrete case, they do not translate directly

to the continuous setting.
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1.3 Dot product in Euclidean space

As in the distance problem, the lowest possible threshold for ensuring that the dot

product set has positive Lebesgue measure is d
2
. The following proposition formalizes

this statement by constructing a counterexample.

Proposition 1.5. Let d ě 2. For every ε ą 0, there exists a compact set E Ă Rd such

that dimH E ą d
2

´ ε and that |ΠpEq| “ 0.

Proof. Fix s P p0, 1{2q. Let tqku8
k“1 be a sequence that satisfies qk`1 ą qkk . For each

k P N, define

Es,qk :“

"

px1, ¨ ¨ ¨ , xdq P r0, 1s
d : Dni P Z such that

ˇ

ˇ

ˇ

ˇ

xi ´
ni

qk

ˇ

ˇ

ˇ

ˇ

ď q
´1{s
k , @1 ď i ď d

*

and Es :“
Ş

kPNEs,qk . One can verify that dimH Es “ sd; see Theorem 8.15 in Falconer’s

book [5] for more details. To prove the proposition, we show that for each s P p0, 1{2q,

|ΠpEsq| “ 0.

Note that ΠpEsq Ă
Ş

kPN ΠpEs,qkq. By direct calculation, for every two points x “

px1, ¨ ¨ ¨ , xdq, y “ py1, ¨ ¨ ¨ , ydq P Es, their dot product is in a C1 q
´1{s
k -neighborhood of

a lattice point of the form n
q2k

for all k P N where C1 is independent of k. Here, n P Z
lies in an admissible range since Es is bounded. This implies that ΠpEsq is contained

in a union of ď C2 q
2
k intervals of length ď C1 q

´1{s
k . Here, C2 is also independent of k.

Therefore, we can conclude that when s ă 1{2, ΠpEsq has measure zero. Finally, for

every ε ą 0, we can take 1
2

´ ε
d

ă s ă 1
2

and construct the compact subset Es of Rd

such that

dimH Es “ sd ą
d

2
´ ε, but |ΠpEsq| “ 0.

In [4], Suresh Eswarathasan, Alex Iosevich, and Krystal Taylor proved that a Haus-

dorff dimension of d`1
2

is a sufficient threshold to ensure that the dot product has

positive Lebesgue measure. More precisely, Corollary 1.5 in [4] implies the following:

Theorem 1.6. If E is a compact subset of Rd with Hausdorff greater than d`1
2

, then

the dot product set ΠpEq :“ tx ¨ y : x, y P Eu has positive Lebesgue measure.

Remark. In fact, the authors proved the result for any function ϕ : Rd ˆRd Ñ R satis-

fying the Phong-Stein rotational curvature condition via generalized Radon transform.

In particular, ϕpx, yq “ x ¨ y satisfies this condition except for the origin, which can be

addressed using the pigeonhole principle.

In [3], Burk Erdoğan, Derrick Hart, and Alex Iosevich proved the following theorem.

Since this theorem plays a crucial role in this research,we will present a detailed proof

based on Fourier analysis.
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Theorem 1.7. Let E,F be compact subsets in Rd with Hausdorff dimension sE, sF .

Suppose there exist Frostman measures µE, µF supported on E,F , and a nonnegative

number lF such that for all sufficiently small δ ą 0,

µF pTδq À δsF ´lF

for every tube Tδ of length « 1, radius « δ that emanates from the origin, and that

sE ` sF ´ lF ą d. Then for µF -a.e. y P F ,

L1
pΠy

pEqq “ L1
ptx ¨ y : x P Euq ą 0.

Remark. In general, having dimH E “ sE does not necessarily imply the existence

of an sE-dimensional Frostman measure supported on E. A similar issue arises for

F and sF . Therefore, as Lemma 1.1 indicates, a more precise formulation is that

HsEpEq ą 0 and HsF pF q ą 0. However, this distinction does not affect the dimensional

threshold, because in such arguments, we typically assume that the compact set under

consideration has dimension “strictly” greater than the threshold. This strict inequality

provides the necessary flexibility for our analysis.

Proof. First of all, by scaling and pigeonholing, we may assume F Ă tx P Rd : 1 ď

|x| ď 2u. Let ϕ be a smooth cutoff function that is identically 1 on E and has compact

support.

For each y P F , define a measure νy on ΠypEq by the following:

ż

R
gpsq dνypsq “

ż

Rd

gpx ¨ yq dµEpxq.

In other words, νy is the push-forward measure of µE under the map

Πy : E ΠypEq

x x ¨ y

P P

Observe that

pνyptq “

ż

R
e´2πits dνypsq “

ż

Rd

e´2πitpx¨yq dµEpxq “

ż

Rd

e´2πix¨ptyq dµEpxq “ xµEptyq

Below, we will show that
ż

Rd

ż

R
| pνyptq|

2 dt dµF pyq ă 8.

If this is true, then for µF -a.e. y P F , pνy P L2, which implies that νy P L2. In other

words, for µF -a.e. y P F , the probability measure νy has an L2-density. Remember that
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supppνyq Ă ΠypEq. Thus, for µF -a.e. y P F , L1pΠypEqq ą 0, which is the statement of

the theorem. Observe that we can assume the range of integration with respect to t is

tt : |t| ě 4u. This is because | pνyptq|2 ď 1, tt : |t| ď 4u has finite measure, and µF is a

probability measure.

We now estimate the integral:
ż

Rd

ż

|t|ě4

| pνyptq|
2 dt dµF pyq “

ż

Rd

ż

|t|ě4

|xµEptyq|
2 dt dµF pyq

“

ż

Rd

ż

|t|ě4

|xµE ˚ pϕptyq|
2 dt dµF pyq

“

ż

Rd

ż

|t|ě4

ˇ

ˇ

ˇ

ˇ

ż

Rd

xµEpξqpϕpty ´ ξq dξ

ˇ

ˇ

ˇ

ˇ

2

dt dµF pyq

À

ż

Rd

ż

|t|ě4

ż

Rd

|xµEpξq|
2
|pϕpty ´ ξq| dξ dt dµF pyq

where the last inequality follows from the Cauchy-Schwarz inequality and the bound
ş

|pϕpty´ξq| dξ ď C, where C is a constant independent of t and y. Given the form of the

integrand, it is natural to decompose the integral based on the relative magnitudes of

|ξ| and |ty´ ξ|. Moreover, since pϕ is a Schwartz function, it satisfies the decay estimate

|pϕpηq| ď CN |η|
´N

for any N ą 0. This decay property is crucial in our analysis, as we shall see shortly.

Region 1: |ξ| ď 2

In this case, |ty ´ ξ| ě |t| ¨ |y| ´ |ξ| Á |t|. Using the estimates |xµEpξq| ď 1 and

|pϕpty ´ ξq| À |ty ´ ξ|´N À t´N , we obtain
ż

Rd

ż

|t|ě4

ż

|ξ|ď2

|xµEpξq|
2
|pϕpty ´ ξq| dξ dt dµF pyq À

ż

Rd

ż

|t|ě4

ż

|ξ|ď2

t´N dξ dt dµF pyq ă 8

Region 2: |ξ| ě 2, |ty ´ ξ| ď 1

In this case, the only available estimate for pϕpty ´ ξq is |pϕpty ´ ξq| À 1. Observe

that in this region, we have |ty| « |ξ|, which implies |t| « |ξ| because we assume F is

contained in the annulus of outer radius 2 and inner radius 1. Hence, we can estimate

the integral:
ż

|ty´ξ|ď1

ż

|t|ě4

ż

|ξ|ě2

|xµEpξq|
2
|pϕpty ´ ξq| dξ dt dµF pyq

À

ż

|ξ|ě2

|xµEpξq|
2
pµF ˆ L1

qtpy, tq : |ty ´ ξ| ď 1u dξ
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Note that

|ty ´ ξ| ď 1 ùñ

ˇ

ˇ

ˇ

ˇ

y ´
|ξ|

t

ξ

|ξ|

ˇ

ˇ

ˇ

ˇ

ď
1

|t|
À

1

|ξ|
.

Fixing ξ, we now analyze the possible range of y. Note that ξ{|ξ| is the unit vector in

the direction of ξ and that |ξ|{t is a scalar, possibly negative, « 1. Since t varies, y

lies within a distance À |ξ|´1 of either the line segment joining c1ξ{|ξ| and c2ξ{|ξ| or

the one joining ´c1ξ{|ξ| and ´c2ξ{|ξ|, where c1 ă c2 are the lower and upper bounds

for the ratio |ξ|{|t|. Therefore, the possible range of y is a union of two tubes of radius

« |ξ|´1 and length « 1 with directions ξ{|ξ| and ´ξ{|ξ|. Now, we fix ξ, y, by the

condition |ty ´ ξ| ď 1, we see that the range of t is contained in an interval of length

À 1. Therefore,
ż

|ξ|ě2

|xµEpξq|
2
pµF ˆ L1

qtpy, tq : |ty ´ ξ| ď 1u dξ

À

ż

|ξ|ě2

|xµEpξq|
2

“

µF pT|ξ|´1pξqq ` µF pT|ξ|´1p´ξqq
‰

dξ

À

ż

|ξ|ě2

|xµEpξq|
2
|ξ|

´sF `lF dξ ă 8

provided that sF ´ lF ą d ´ sE, which is true by the assumption of the theorem.

Region 3: @m P N, 2m ď |ξ| ď 2m`1, and @l P N Y t0u : l ď m ´ 3, 2l ď |ty ´ ξ| ď 2l`1

This region consists of many parts associated with different m, l. We first fix l P NYt0u

and integrate ξ over the region tξ : |ξ| ě 2l`3u. Finally, we sum over all l P N Y t0u.

Under the assumption of m ě l ` 3, we see that

|ty ´ ξ| ď 2l`1
ď

1

4
¨ 2m

ď
1

4
|ξ|.

This implies that |ty| « |ξ| and that |t| « |ξ|. Then we can estimate the integral of this

region

integral “
ÿ

lě0

ż

|t|ě4

ż

|ξ|ě2l`3

ż

2lď|ty´ξ|ď2l`1

|xµEpξq|
2
|pϕpty ´ ξq| dµF pyq dξ dt

À
ÿ

lě0

ż

|ξ|ě2l`3

|xµEpξq|
2

¨ 2´lN
¨ pµF ˆ L1

qtpy, tq : |ty ´ ξ| ď 2l`1
u dξ

By the same argument as before, we see that

|ty ´ ξ| ď 2l`1
ùñ

ˇ

ˇ

ˇ

ˇ

y ´
|ξ|

t

ξ

|ξ|

ˇ

ˇ

ˇ

ˇ

À 2l`1
|ξ|

´1
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and that

pµF ˆ L1
qtpy, tq : |ty ´ ξ| ď 2l`1

u À 2l
“

µF pT2l`1|ξ|´1pξqq ` µF pT2l`1|ξ|´1p´ξqq
‰

where the factor 2l is an upper bound of the length of the range of t when both ξ, y are

fixed. Thus,

integral À
ÿ

lě0

2´lN

ż

|ξ|ě2l`3

|xµEpξq|
2

¨ 2l
¨
“

µF pT2l`1|ξ|´1pξqq ` µF pT2l`1|ξ|´1p´ξqq
‰

dξ

À
ÿ

lě0

2´lpN´1q

ż

|ξ|ě2l`3

|xµEpξq|
2

`

2l`1
˘sF ´lF

|ξ|
´sF `lF dξ

À

ż

|ξ|ě8

|xµEpξq|
2
|ξ|

´sF `lF dξ ¨

˜

ÿ

lě0

2´lpN´1`lF ´sF q

¸

ă 8

provided that N is large enough.

Region 4: @m P N, 2m ď |ξ| ď 2m`1, |ty ´ ξ| ě 2m´2, and |t| ď 2m

Observe that in this region, we have

|pϕpty ´ ξq| À |ty ´ ξ|
´N

À 2´mN .

Hence, the integral of this region can be estimated as below:

integral “
ÿ

mě1

ż

4ď|t|ď2m

ż

2mď|ξ|ď2m`1

ż

|ty´ξ|ě2m´2

|xµEpξq|
2
|pϕpty ´ ξq| dµF pyq dξ dt

À
ÿ

mě1

ż

4ď|t|ď2m

ż

2mď|ξ|ď2m`1

ż

Rd

|xµEpξq|
2

¨ 2´mN dµF pyq dξ dt

“
ÿ

mě1

2´mN

ż

4ď|t|ď2m

ż

2mď|ξ|ď2m`1

|xµEpξq|
2 dξ dt

À
ÿ

mě1

2´mN
¨ 2m

ż

2mď|ξ|ď2m`1

|xµEpξq|
2 dξ

À
ÿ

mě1

2´mpN´1q2md
ă 8

provided that N is chosen large enough.

Region 5: @m P N, 2m ď |ξ| ď 2m`1, |ty ´ ξ| ě 2m´2, and |t| ě 2m
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Note that under the assumption, we have

|t| À |ty ´ ξ| ` |ξ| À |ty ´ ξ|

because |ξ| ď 2m`1 “ 8 ¨ 2m´2 ď 8|ty ´ ξ|. So,

integral “
ÿ

mě1

ż

|t|ě2m

ż

2mď|ξ|ď2m`1

ż

|ty´ξ|ě2m´2

|xµEpξq|
2
|pϕpty ´ ξq| dµF pyq dξ dt

À
ÿ

mě1

ż

|t|ě2m

ż

2mď|ξ|ď2m`1

ż

|ty´ξ|ě2m´2

|xµEpξq|
2

¨

”

|pϕpty ´ ξq| ¨ |ty ´ ξ|
2
ı

¨ |t|´2 dµF pyq dξ dt

À
ÿ

mě1

ż

|t|ě2m

ż

2mď|ξ|ď2m`1

ż

Rd

|xµEpξq|
2

¨ 2´mN dµF pyq|t|´2 dξ dt

“
ÿ

mě1

2´mN

ż

|t|ě2m

ż

2mď|ξ|ď2m`1

|xµEpξq|
2

¨ |t|´2 dξ dt

À
ÿ

mě1

2´mN

„
ż

|t|ě2m
|t|´2 dt

ȷ

¨

„
ż

2mď|ξ|ď2m`1

|xµEpξq|
2 dξ

ȷ

À
ÿ

mě1

2´mpN´dq
ă 8

if N is chosen properly.

Remark. Note that we can always take lF “ 1, which gives an alternative proof of

Theorem 1.6.

Burk Erdoğan, Derrick Hart, and Alex Iosevich also established the following corol-

lary in the same paper [3]:

Corollary 1.8. Let a compact set

E Ă Sd´1
“

"

x “ px1, ¨ ¨ ¨ , xdq P Rd :
b

x2
1 ` x2

2 ` ¨ ¨ ¨ ` x2
d “ 1

*

be of Hausdorff dimension greater than d
2
. Let µE be a Frostman measure on E. Then

L1
ptx ¨ y : x P Euq ą 0

for µE´a.e. y P E. In particular, we have |ΠpEq| ą 0.

Remark. Corollary 1.1.1 in [3] originally concerned distances rather than dot products.

However, the authors established the distance result through an analysis of the dot

product. This follows from the observation that for two points x, y on the sphere of

radius r centered at the origin,

|x ´ y|
2

“ |x|
2

` |y|
2

´ 2x ¨ y “ 2r2 ´ 2x ¨ y.
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Remark. The results in [3] provide a stronger, pinned version: for admissible sets E,F

and measures µE, µF , it holds that for µF -almost every y P F , |ΠypEq| ą 0. In other

words, there exist many points x P E such that |ΠxpEq| ą 0, which is clearly a stronger

result than merely proving |ΠpEq| ą 0.

Remark. Based on the results of [1], one may conjecture whether the d
2

exponent for

dot products on paraboloids can be improved in the continuous setting. However, if we

only apply Theorem 1.7, we can never lower the d
2

threshold, as l is always nonnegative,

which forces 2s ą d. Moreover, if the d
2

threshold could be surpassed, it would contrast

with the case of dot product on the sphere Sd´1, as shown in Corollary 1.8.

1.4 State-of-the-art pinned distance results

In this subsection, we present the latest results on the pinned distance problem, which

serve as essential components for our main result.

For d “ 2, the best known result is due to Larry Guth, Alex Iosevich, Yumeng Ou,

and Hong Wang [6]:

Theorem 1.9. If E Ă R2 is a compact subset of dimension larger than 5
4
, then there

exists a point x P E such that ∆xpEq :“ t|x´y| : y P Eu has positive Lebesgue measure.

As for d ě 3, the best known result is given by Xiumin Du, Yumeng Ou, Kevin

Ren, and Ruixiang Zhang [2]:

Theorem 1.10. If d ě 3 and E Ă Rd is a compact subset of dimension larger than
d
2

` 1
4

´ 1
8d`4

, then there exists a point x P E such that ∆xpEq has positive Lebesgue

measure.

The above two results were derived using the decoupling method. Moreover, one

can notice that at the beginning of the two papers, the authors considered two subsets

E1, E2 of E that remain large in dimension and are separated by a distance Á 1.

Therefore, we obtain a stronger version of these pinned distance theorems:

Theorem 1.11. 1. If E1, E2 are two compact subsets of R2 whose dimensions are

both greater than 5
4
, then there exists x P E2 such that ∆xpE1q has positive

Lebesgue measure.

2. If d ě 3, and E1, E2 are two compact subsets of Rd whose dimensions are both

greater than d
2

` 1
4

´ 1
8d`4

, then there exists x P E2 such that ∆xpE1q has positive

Lebesgue measure.

Proof. If E1 X E2 has dimension greater than the threshold in Theorem 1.9 or The-

orem 1.10, then we can apply the corresponding theorem directly. Otherwise, both
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E1zE2 and E2zE1 have dimension larger than the threshold. In this case, applying

the pigeonhole principle, we obtain two compact subsets E 1
1, E

1
2 of E1, E2, respectively,

that are separated and have sufficiently large dimensions. By applying the arguments

in Theorem 1.9 or Theorem 1.10 to E 1
1 and E 1

2, we conclude that there exists a point

x P E 1
2 such that ∆xpE 1

1q has positive Lebesgue measure, which establishes the desired

result.

1.5 The main result

The three theorems below are our main results:

Theorem 1.12 (Case d “ 3). Let P3 be the standard paraboloid, defined as P3 :“

tpx̄, |x̄|2q : x̄ P R2u Ă R3, and let a “ pā, a3q be a translation vector. For every a P R3

and every compact subset E of the translated paraboloid a ` P3 with dimH E ą 5
4

“
3
2

´ 1
4
, its dot product set ΠpEq has positive Lebesgue measure.

Theorem 1.13 (Case d ě 4). For d ě 4, let Pd be the standard paraboloid, defined

as Pd :“ tpx̄, |x̄|2q : x̄ P R2u Ă Rd, and let a “ pā, adq be a translation vector. For

every a P Rd and every compact subset E of the translated paraboloid a ` Pd with

dimH E ą d
2

´ 1
4

´ 1
8d´4

, its dot product set ΠpEq has positive Lebesgue measure.

Remark. The results for d “ 3 and d ě 4 differ due to a distinction in the best-known

pinned distance bounds: for d “ 2, the bound is 5
4
, whereas for d ě 3, it is given by

d
2

` 1
4

´ 1
8d`4

.

Remark. In fact, the above results can be strengthened: for every compact subset E

of the translated paraboloid a ` Pd whose dimension exceeds the thresholds given in

the previous theorems, there exists a point x P E such that the pinned dot product set

ΠxpEq has positive Lebesgue measure.

2 The key observation and a few lemmas

2.1 The key observation

Let a “ pā, adq P Rd represent a translation vector where ā P Rd´1, ad P R. Recall the

definition of the standard paraboloid:

Pd “ tpx̄, |x̄|
2
q : x̄ P Rd´1

u.

We consider the dot product on the translated paraboloid a ` Pd. By the definition of

translation, we have

a ` Pd “ tpx̄ ` ā, |x̄|
2

` adq : x̄ P Rd´1
u.
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Figure 1: Translated paraboloid a ` Pd

For any two points px̄ ` ā, |x̄|2 ` adq, pȳ ` ā, |ȳ|2 ` adq on a ` Pd, suppose their dot

product is t. Then, we compute:

t “ px̄ ` ā, |x̄|
2

` adq ¨ pȳ ` ā, |ȳ|
2

` adq

“ x̄ ¨ ȳ ` ā ¨ x̄ ` ā ¨ ȳ ` |ā|
2

` |x̄|
2
|ȳ|

2
` ad|x̄|

2
` ad|ȳ|

2
` a2d

“ p|x̄|
2

` adq|ȳ|
2

` ȳ ¨ px̄ ` āq ` pā ¨ x̄ ` |ā|
2

` ad|x̄|
2

` a2dq

Completing the square gives

t “ p|x̄|
2

` adq|ȳ|
2

` 2ȳ ¨
x̄ ` ā

2
` pā ¨ x̄ ` |ā|

2
` ad|x̄|

2
` a2dq

“ p|x̄|
2

` adq

ˇ

ˇ

ˇ

ˇ

ȳ `
x̄ ` ā

2p|x̄|2 ` adq

ˇ

ˇ

ˇ

ˇ

2

` hpa, x̄q

“ p|x̄|
2

` adq

ˇ

ˇ

ˇ

ˇ

´
x̄ ` ā

2p|x̄|2 ` adq
´ ȳ

ˇ

ˇ

ˇ

ˇ

2

` hpa, x̄q

(1)

where

hpa, x̄q “ pā ¨ x̄ ` |ā|
2

` ad|x̄|
2

` a2dq ´
|x̄ ` ā|2

4p|x̄|2 ` adq
.

Note that the above computation requires |x̄|2 ` ad ‰ 0.

Now, fix the translation vector a “ pā, adq and the translated paraboloid a ` Pd.

For any x̄ P Rd´1 such that |x̄|2 ` ad ‰ 0, it determines both ´ x̄`ā
2p|x̄|2`adq

and hpa, x̄q. If

E is a compact subset of a ` Pd, we obtain

Πpx̄,|x̄|2q`a
pEq “ p|x̄|

2
` adqp∆2

q
´ x̄`ā

2p|x̄|2`adq pĒq ` hpa, x̄q (2)
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where px̄, |x̄|2q`a is a point on a`Pd, ∆2 refers to the configuration of distance square,

and Ē “ tx̄ : px̄ ` ā, |x̄|2 ` adq P Eu.

Remember that we have already fixed a, x̄, so

|Πpx̄,|x̄|2q`a
pEq| ą 0 ðñ |∆

´ x̄`ā

2p|x̄|2`adq pĒq| ą 0

because the distance square set has positive Lebesgue measure if and only if the distance

set does. To conclude, we have “generically” transformed the dot product problem on

a translated paraboloid into a pinned distance problem in one lower dimension.

2.2 Transformation maps

From (2), we observe the significance of the mapping x̄ ÞÝÑ ´ x̄`ā
2p|x̄|2`adq

. For convenience,

we introduce the following definition.

Definition 2.1. For a “ pā, adq P Rd, the transformation map associated with a,

denoted as Ta, is defined by

Ta : Rd´1ztx̄ : |x̄|2 ` ad “ 0u Rd´1

x̄ ´ x̄`ā
2p|x̄|2`adq

P P
In order to apply the pinned distance results, we need to verify that transformation

maps preserve the Hausdorff dimension of Ē. We begin with the following lemma.

Lemma 2.2. U and V are open sets in Rd. Suppose f : U Ă Rd Ñ V Ă Rd is C1

and its Jacobian does not vanish on its domain U . Then dimH fpKq “ dimH K for all

compact sets K in U .

Proof. Since f is locally Lipschitz, we immediately obtain dimH fpKq ď dimH K. The

majority of our proof focuses on establishing the converse inequality. Since the Jacobian

is nonzero, the Inverse Function Theorem ensures that for each x P K, there exists an

open ball Bx centered at x such that Bx Ă 2Bx Ă U, fp2Bxq Ă V and that

f |2Bx : 2Bx ÝÑ fp2Bxq

is a C1-diffeomorphism. Note that tBxuxPK is an open cover of K and that by com-

pactness, there exists a finite cover tBxi
uNi“1 of K. Thus, there exists at least one chart

whose closure intersects K in a way that preserves the dimension of K. Without loss

of generality, we assume dimHpK X Bx1q “ dimH K.

Observe that K XBx1 is now in the domain of the C1-diffeomorphism f |2Bx1
. Since

a C1-diffeomorphism preserves dimension, we have

dimH fpKq ě dimH fpK X Bx1q “ dimHpK X Bx1q “ dimH K.
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Thus, we proceed to compute the Jacobian determinant of the transformation maps.

Proposition 2.3. For a “ pā, adq P Rd, we have

JacTa “ 2

ˆ

´1

2p|x̄|2 ` adq

˙d
«

d´1
ÿ

i“1

pxi ` aiq
2

´ a21 ´ ¨ ¨ ¨ ´ a2d´1 ´ ad

ff

.

Proof. Recall the definition

Ta : x̄ ÞÝÑ ´
x̄ ` ā

2p|x̄|2 ` adq
“ ȳ.

So, for each 1 ď i ď d ´ 1,

yi “
´xi ´ ai

2px2
1 ` ¨ ¨ ¨ ` x2

d´1 ` adq
.

By direct calculation, for 1 ď i ‰ j ď d ´ 1,

Byi
Bxi

“
´1

2p|x̄|2 ` adq
`

2xipxi ` aiq

2p|x̄|2 ` adq2

and
Byi
Bxj

“
2xjpxi ` aiq

2p|x̄|2 ` adq2
.

If we let

aij :“
xjpxi ` aiq

p|x̄|2 ` adq2
, z :“

´1

2p|x̄|2 ` adq
,

we can write
Byi
Bxi

“ aii ` z,
Byi
Bxj

“ aij.

Also note that in the matrix paijq1ďi,jďd´1, every two rows are linearly dependent.

Therefore, we can apply row operations to calculate the Jacobian determinant:

det

¨

˚

˚

˚

˝

a11 ` z a12 ¨ ¨ ¨ a1,d´1

a21 a22 ` z ¨ ¨ ¨ a2,d´1

...
...

. . .
...

ad´1,1 ad´1,2 ¨ ¨ ¨ ad´1,d´1 ` z

˛

‹

‹

‹

‚

.

By applying row operations (adding a multiple of the first row to other rows), we can

turn the lower right pd ´ 2q ˆ pd ´ 2q matrix into zId´2, transform the upper right

1 ˆ pd ´ 2q matrix into the zero vector, and turn the p1, 1q-component into

z ` a11 `

d´1
ÿ

i“2

a1,i
ai,1
a11
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under the assumption a11 ‰ 0. Therefore, we obtain

JacTa “ zd´2

˜

z ` a11 `

d´1
ÿ

i“2

a1,i
ai,1
a11

¸

“ zd´2

˜

´1

2p|x̄|2 ` adq
`

px1 ` a1q2x1

2p|x̄|2 ` adq2
`

d´1
ÿ

i“2

px1 ` a1q2xi

2p|x̄|2 ` adq2
¨
xi ` ai
x1 ` a1

¸

“
zd´2

2p|x̄|2 ` adq2

«

´|x̄|
2

´ ad `

d´1
ÿ

i“1

2xipxi ` aiq

ff

“ 2zd

«

d´1
ÿ

i“1

pxi ` aiq
2

´ a21 ´ ¨ ¨ ¨ ´ a2d´1 ´ ad

ff

“ 2

ˆ

´1

2p|x̄|2 ` adq

˙d
«

d´1
ÿ

i“1

pxi ` aiq
2

´ a21 ´ ¨ ¨ ¨ ´ a2d´1 ´ ad

ff

provided that a11 ‰ 0. Finally, we verify that the formula also holds for a11 “ 0 by

direct computation.

2.3 A technical lemma concerning Theorem 1.7

This subsection presents a lemma that plays a crucial role in Section 3.

Lemma 2.4. Suppose M Ă Rd is a compact pd´1q-dimensional hypersurface that does

not contain the origin and there exists a compact subset K of Sd´1 and a C1-function

r : K Ă Sd´1 Ñ Rą0 such that M can be described by the bijective map ı

ı : K Ă Sd´1 M

e rpeqe

P P

Then, there exists a constant N ą 0 such that for all e P Sd´1 and for all sufficiently

small δ ą 0, the intersection of M with any tube Tδpeq of radius δ, emanating from the

origin in the direction of e, can be covered by at most N balls of radius 2δ.
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Figure 2: M can be described by ı

Remark. In the statement, we require r P C1pKq, which means that the function r

can actually be extended to a small neighborhood of K Ă Sd´1 such that the extension

is C1.

Remark. In fact, the constant 2 in 2δ can be replaced by any value larger than 1. The

key point is that when applying Theorem 1.7 to a compact subset E Ă M , where M

satisfies the conditions of this lemma, we can always take l “ 0. Here, l corresponds

to lF in the statement of Theorem 1.7. This follows from the fact that the intersection

region is contained within a subtube of the same radius, but with a length À δ. In the

proof, we refer to the length of the shortest such tube as the ”intersection length.”

Proof. Since r is continuous and strictly positive, the hypersurface M is bounded away

from the origin. Moreover, let R be the maximum of r on K, and let R0 be the

minimum. Consider any line with direction e that passes through the origin. Note that

the tube Tδpeq is the δ-neighborhood of this line. The tube Tδpeq only intersects M in

the region ıpBCR´1
0 δpeq X Sd´1q where C ą 0 is a constant independent of both e and δ.

Therefore, we only need to consider the function r on a CR´1
0 δ-neighborhood of e in

Sd´1. Let ymax be the maximum of the function

Πe : Rd Rą0

x x ¨ e

P P

within the region ıpBCR´1
0 δpeq X Sd´1q, and let ymin be the minimum, attained by ξmax

and ξmin , respectively. It follows by simple geometry that

intersection length “ ymax ´ ymin .
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We also let rmax be the maximum of the function r within BCR´1
0 δpeq X Sd´1, and let

rmin be the minimum. Assume that they are attained by ηmax and ηmin , respectively.

Therefore, we have

intersection length “ ymax ´ ymin “ ξmax ¨ e ´ ξmin ¨ e

ď |ξmax | ´
a

|ξmin |2 ´ δ2

ď rmax ´

b

r2min ´ δ2 “
r2max ´ r2min ` δ2

rmax `
a

r2min ´ δ2
ď

r2max ´ r2min ` δ2

R0 ` 1
2
R0

ď
2Rprmax ´ rmin q ` δ2

3
2
R0

ď
2R ¨ C1δ ` δ2

3
2
R0

ď C2δ.

where the intersection length refers to the length of the intersection. The above implies

that the intersection is contained in a subtube of radius δ but length À δ, which can

be covered by N balls of radius 2δ where N is a constant independent of both δ and e.

Figure 3: Geometric illustration of the intersection length in Lemma 2.4.

Remark. It is noteworthy that we do not use the assumption that M is a pd ´ 1q-

dimensional hypersurface. In fact, the proof still works for smaller compact sets F that

19



can be described using the polar coordinates and a radius function r P C1pı´1pF qq.

Here, C1pı´1pF qq means the function r, defined on the compact subset ı´1pF q Ă Sd´1,

admits a C1 extension to an open neighborhood of this domain.

3 Proof of the main result

In this section, we first state our strategy. We then identify two key obstacles and

address them separately. Finally, we give a proof of the main results, serving as a

concluding argument.

3.1 Strategy

We will express the dot product on paraboloids in terms of one lower-dimensional

distance, enabling us to apply the pinned distance results. However, two key issues

must be addressed.

First, this approach does not work when |x̄|2`ad “ 0, which is evident from the def-

inition of transformation maps. Second, we must ensure that the transformation maps

preserve dimension. By Lemma 2.2 and Proposition 2.3, the dimension is preserved

as long as the set under consideration stays away from the region where the Jacobian

vanishes.

Finally, we have to address the following two problematic parts:

1. Singularity: The region where |x̄|2 ` ad “ 0, which occurs when ad ď 0.

2. Degenerate region: The region where Ta has zero Jacobian. By Proposition 2.3,

this region is given by

tpx̄ ` ā, |x̄|
2

` adq :
d´1
ÿ

i“1

pxi ` aiq
2

“ a21 ` ¨ ¨ ¨ ` a2d´1 ` adu

where x̄ “ px1, ¨ ¨ ¨ , xd´1q. This region occurs when a21 ` ¨ ¨ ¨ ` a2d´1 ` ad ě 0.

3.2 Singularity

From the calculations in the previous section, it is clear that we cannot analyze the dot

product through pinned distance results for compact subsets of the singularity:

S :“ tpx̄ ` ā, |x̄|
2

` adq : |x̄|
2

` ad “ 0u “ tpx̄ ` ā, 0q : |x̄|
2

` ad “ 0u.

Instead, we analyze the dot product directly using Theorem 1.7.
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Note that the singularity set

S “ tpx̄ ` ā, |x̄|
2

` adq : |x̄|
2

` ad “ 0u “ tpx̄ ` ā, 0q : |x̄|
2

` ad “ 0u

occurs only when ad ď 0. If ad “ 0, then S consists of a single point, which together

with a small neighborhood of itself can be removed by the pigeonhole principle. From

now on, assume throughout this subsection that ad ă 0.

When considering the dot product, the d-th component is always zero, so we can

focus only on the first d ´ 1 components and work within Rd´1. Note again that

tx̄ ` ā : |x̄|
2

` ad “ 0u

is a pd ´ 2q-dimensional sphere of radius
?

´ad centered at ā.

Figure 4: Singularity

There are three cases to distinguish: whether the origin is inside the sphere, on the

sphere, or outside the sphere. We explore the dimensional threshold ensuring every

compact subset E of
?

´ad Sd´2 ` ā has a product set of positive Lebesgue measure.

(Note: Since we are working in Rd´1, we need to replace d with d ´ 1 when applying

Theorem 1.7.)
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Case 1: O is inside
?

´ad Sd´2 ` ā

In this case, we set K “ Sd´2 and M “
?

´ad Sd´2 ` ā. Applying Lemma 2.4 in

pd´ 1q dimensions, we find that for any tube Tδpeq, which has length « 1 and radius δ,

emanating from the origin in the direction e, the intersection with M can be covered

by at most N balls of radius 2δ.

Thus, for any s-dimensional Frostman measure µ supported on the sphere
?

´ad Sd´2`

ā, we obtain the bound:

µpTδpeqq ď

N
ÿ

i“1

µpBiq À Np2δq
s

“ pN2s
qδs,

where B1, . . . , BN are balls of radius 2δ covering the intersection of Tδpeq and M .

Finally, we apply Theorem 1.7 and conclude that the dimension threshold in this

case is d´1`0
2

“ d´1
2

.

Figure 5: O is inside the sphere.

Case 2: O lies on
?

´ad Sd´2 ` ā
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In this case, we exclude the origin and a sufficiently small ε-neighborhood around it.

We define K as the half-sphere with a small neighborhood of the boundary removed,

and set M “ p
?

´ad Sd´2 ` āqzBεpOq. We then apply Lemma 2.4, since the function

r ą 0 can be extended to a C1 function on the half-sphere excluding the boundary.

Finally, applying Theorem 1.7, we obtain the same dimensional threshold d´1
2

.

Figure 6: O lies on the sphere.

Case 3: O is outside
?

´ad Sd´2 ` ā

This case is more complicated, requiring us to divide the translated sphere into three

parts: the visible part, the tangent part, and the invisible part. We apply Lemma 2.4 to

both the visible and invisible parts, excluding a small neighborhood around the tangent

part, which yields the threshold d´1
2

. The tangent part, which is a pd ´ 3q-dimensional

sphere, along with its small neighborhood represents the most challenging scenario.
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Figure 7: O is outside the sphere.

Figure 8: Visible, tangent, and invisible parts of the sphere
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Now, we show that the set under consideration, E, which is a compact subset of

the sphere S “
?

´ad Sd´2 ` ā, can be reduced either to a compact subset of the

tangent part T , or to a compact subset that does not intersect T . This is done via a

pigeonholing argument.

Suppose dimH E ą α for a dimensional threshold α P p0, dq. If dimHpE X T q ą α,

then we consider the compact set E X T , which is a compact subset of both E and T

with dimension greater than α. On the other hand, if dimHpE X T q ď α, pick some

0 ă ε ă dimH E ´α. Denote by Hα`ε the pα ` εq-dimensional Hausdorff measure, and

let T β be the β-neighborhood of T . By the fact that Hausdorff measures are Borel and

by monotonicity,

8 “ Hα`ε
pE z T q “ lim

nÑ8
Hα`ε

pE z T
1
n q.

Thus, there exists N large enough such that

Hα`ε
pE z T

1
N q ą 0,

which implies that the set E z T
1
N has dimension at least α ` ε. Moreover, it is a

compact set bounded away from T . Therefore, we have reduced E to a compact subset

that does not intersect T and has dimension greater than α.

We now handle the case where E is a compact subset of S that does not intersect T .

Note that in this case, either the portion in the visible part or that in the invisible part

has large dimension. Recall that both the visible and invisible parts can be parametrized

by polar coordinates. Therefore, the dimensional threshold ensuring that E has a dot

product set of positive measure is d´1
2

in this case.

The case where E is a compact subset of T requires closer examination. Observe

that all the points in T have the same distance to the origin. When considering the

projection ı´1pT q of T onto Sd´2, the radius function r : ı´1pT q Ñ Rą0 is constant on

its domain. This shows that it admits a C1 extension to an open neighborhood of its

domain, implying r P C1pı´1pT qq. Recall that the remark following Lemma 2.4 relaxes

the assumption and enables the lemma to apply to smaller sets. Therefore, we are able

to apply Lemma 2.4 to T and ı´1pT q and conclude that the intersection of T with each

tube Tδpeq has length À δ. Hence, the exponent is also d´1
2

.

In fact, we can avoid using the remark after Lemma 2.4. Note that T is contained in

R Sd´2, where R “
a

|ā|2 ` ad is the distance from each point in T to the origin. We can

then apply Lemma 2.4 directly to R Sd´2. Thus, since pTδpeq X T q Ă pTδpeq X R Sd´2q,

it can be covered by at most N balls of radius 2δ, which yields the exponent d´1
2

.

Although the two arguments appear different, they share a common insight: embed

T into another hypersurface that can be described using polar coordinates.

By discussing the three cases, we also obtain a by-product theorem. (Note: When

discussing the singularity S, we are working within Rd´1. However, the underlying

space of the following theorem is Rd. As a result, the exponents may appear different.)
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Theorem 3.1. Let a P Rd be any translation vector. Suppose E is a compact subset

of the translated sphere a ` Sd´1. If dimH E ą d
2
, then there exists x P E such that

|Πx
pEq| ą 0.

In particular, |ΠpEq| ą 0.

Remark. This generalizes Corollary 1.8. Consider a translated sphere that does not

enclose the origin, and consider a tangent tube. The intersection of such a tube and

the sphere has length « δ
1
2 , which requires « δ´ 1

2 balls of radius 2δ to cover it. This is

because the intersection lies within a spherical cap of thickness δ. Hence, I previously

derived the exponent d`1{2
2

“ d
2

` 1
4
. Later, I realized that a sharper exponent d

2
can be

obtained by dividing the sphere, reducing to a subset via the pigeonhole principle, and

embedding the tangent part into another hypersurface.

Figure 9: Spherical cap of thickness δ

3.3 Degenerate region

Recall that the degenerate region refers to the set of points in Rd´1 where the trans-

formation map has zero Jacobian. From the calculations in Proposition 2.3, this set is
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given by:

D̄ :“ tx̄ “ px1, . . . , xd´1q :
d´1
ÿ

i“1

pxi ` aiq
2

“ a21 ` ¨ ¨ ¨ ` a2d´1 ` ad u.

If a21 ` ¨ ¨ ¨ ` a2d´1 ` ad ă 0, then the set is empty. If a21 ` ¨ ¨ ¨ ` a2d´1 ` ad “ 0, then the

set consists of a single point, which also corresponds to a single point on the paraboloid

a ` Pd and can be ignored using the pigeonhole principle. From now on, we assume

that a21 ` ¨ ¨ ¨ ` a2d´1 ` ad ą 0 throughout this subsection.

We now examine the corresponding degenerate region D on the translated paraboloid

a ` Pd:
D “ tpx̄ ` ā, |x̄|

2
` adq : x̄ P D̄u

“ tpx̄ ` ā, |x̄|
2

` adq :
d´1
ÿ

i“1

pxi ` aiq
2

“ a21 ` ¨ ¨ ¨ ` a2d´1 ` ad u

“ tpx̄ ` ā, |x̄|
2

` adq : |x̄ ` ā|
2

“ a21 ` ¨ ¨ ¨ ` a2d´1 ` ad u.

It follows that the degenerate region D on the paraboloid is precisely the intersection

of the translated paraboloid and the cylinder:

tpy1, . . . , yd´1, ydq P Rd :
d´1
ÿ

i“1

y2i “ a21 ` ¨ ¨ ¨ ` a2d´1 ` ad u.

In other words, the degenerate region D can be characterized by the following two

algebraic equations:

#

yd ´ ad “ py1 ´ a1q
2

` ¨ ¨ ¨ ` pyd´1 ´ ad´1q
2,

y21 ` ¨ ¨ ¨ ` y2d´1 “ a21 ` ¨ ¨ ¨ ` a2d´1 ` ad.

Substituting the second equation into the first, we derive the equation of a hyperplane

H:

yd “ 2pa21 ` ¨ ¨ ¨ ` a2d´1 ` adq ´ 2a1y1 ´ ¨ ¨ ¨ ´ 2ad´1yd´1.

This defines a pd ´ 1q-dimensional hyperplane in Rd that does not contain the origin.

Since the hyperplane does not pass through the origin, it is bounded away from it.

By basic high-dimensional geometry, we conclude that the degenerate region D, which

is the intersection of the hyperplane H and the cylinder, forms a pd ´ 2q-dimensional

ellipsoidal hypersurface.
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Figure 10: Degenerate region

Now, we make a crucial observation. We can apply a suitable rotation g P Opdq to

the hyperplane H to bring it into the following form, while preserving the dot product

since g P Opdq:

gH “

$

&

%

pz1, . . . , zd´1, zdq : zd “
2pa21 ` ¨ ¨ ¨ ` a2d´1 ` adq
b

4a21 ` ¨ ¨ ¨ ` 4a2d´1 ` 1

,

.

-

.

That is, the first d ´ 1 coordinates are free, while the last coordinate represents

the distance between the origin and H. Since g is a rigid motion, the degenerate

region remains an ellipsoidal hypersurface on the pd ´ 1q-dimensional hyperplane gH.

Therefore, as in the discussion of singularity, we only need to focus on the dot product

in the first pd´ 1q coordinates, as the last coordinate is now a constant. This allows us

to lower the dimensional threshold.

Now, we work in Rd´1 and again apply Theorem 1.7 to analyze the dot product.

Specifically, we must consider whether the origin O P Rd´1 lies inside, outside, or on the
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ellipsoidal hypersurface gD, as discussed in Subsection 3.2. Recall that an ellipsoid can

be transformed into a ball via a rescaling linear isomorphism. Hence, the arguments in

Subsection 3.2 still apply to gD with slight modifications. To conclude, all cases yield

the same exponent d´1
2

. Therefore, if E is a compact subset of the degenerate region

D and dimH E ą d´1
2

, then there exists x P E such that |ΠxpEq| ą 0.

3.4 Proof of our main theorem for d “ 3

The proof for the d “ 3 case is relatively straightforward because both the singularity

and the degenerate region are at most d ´ 2 “ 1-dimensional, which is below the

threshold 5
4

derived from the pinned distance result.

We now proceed with the proof of the main theorem for d “ 3. Fix a “ pā, a3q. For

any compact subset E of a translated paraboloid a ` P3 “ pā, a3q ` P3 with Hausdorff

dimension greater than 5
4
, we define

Ē “ tx̄ : px̄ ` ā, |x̄|
2

` a3q P Eu.

Observe that there is a one-to-one correspondence between Ē Ă R2 and E Ă a ` P3 Ă

R3. Since both the singularity and the degenerate region are at most 1-dimensional, they

can be removed along with a small neighborhood surrounding them without losing too

much dimension by the pigeonhole principle. More precisely, we can obtain a compact

subset of E that still has Hausdorff dimension greater than 5
4

while being bounded

away from the singular and degenerate regions. Thus, without loss of generality, we

may assume E is bounded away from these bad parts.

Fix a “ pā, a3q and the compact set E on a ` P3 with dimension greater than 5
4

and bounded away from the singular and degenerate regions. By the key observation

in Section 2.1, for each px̄, |x̄|2q ` a, we have

|Πpx̄,|x̄|2q`a
pEq| ą 0 ðñ |∆

´ x̄`ā

2p|x̄|2`a3q pĒq| “ |∆Tapx̄q
pĒq| ą 0.

Since Ē is bounded away from the singularity, Tapx̄q is well-defined for all x̄ P Ē, and

since it is also bounded away from the degenerate region, Proposition 2.3 and Lemma

2.2 ensure that dimHpTapĒqq “ dimHpĒq “ dimH E ą 5
4
.

The crucial step is to apply Theorem 1.11 for dimension d ´ 1 “ 3 ´ 1 “ 2 to the

sets E1 “ Ē and E2 “ TapĒq. This guarantees the existence of some ȳ “ Tapx̄q P TapĒq

where x̄ P Ē such that

|∆ȳ
pĒq| “ |∆Tapx̄q

pĒq| ą 0.

Consequently, we obtain

|Πpx̄,|x̄|2q`a
pEq| ą 0,

which implies |ΠpEq| ą 0, thereby completing the proof for the case d “ 3.
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3.5 Proof of our main theorem for d ě 4

Let a “ pā, adq be an arbitrary translation vector in Rd, and let E be a compact subset

of a ` Pd with dimH E ą d
2

´ 1
4

´ 1
8d´4

. By a pigeonholing argument, we can reduce to

three cases:

• E is a compact subset of S with dimH E ą d
2

´ 1
4

´ 1
8d´4

,

• E is a compact subset of D with dimH E ą d
2

´ 1
4

´ 1
8d´4

, or

• E does not intersect either S or D and still satisfies dimH E ą d
2

´ 1
4

´ 1
8d´4

.

If E is a compact subset of S with dimH E ą d
2

´ 1
4

´ 1
8d´4

ą d´1
2

, then by the

discussion in Subsection 3.2, there exists x P E such that |ΠxpEq| ą 0.

If E is a compact subset of D with dimH E ą d
2

´ 1
4

´ 1
8d´4

ą
pd´1q

2
, then by the

discussion in Subsection 3.3, there exists x P E such that |ΠxpEq| ą 0.

Finally, suppose E is a compact set that does not intersect S or D. Since it does

not intersect S, the projection Ē Ă Rd´1 is well-defined and satisfies

dimH Ē “ dimH E ą
d

2
´

1

4
´

1

8d ´ 4
“

pd ´ 1q

2
`

1

4
´

1

8pd ´ 1q ` 4
.

Moreover, since E does not intersect D, the Jacobian determinant of Ta does not vanish

on Ē or on a small open neighborhood of it. By Proposition 2.2,

dimH TapĒq “ dimH Ē ą
d

2
´

1

4
´

1

8d ´ 4
“

pd ´ 1q

2
`

1

4
´

1

8pd ´ 1q ` 4
.

Now, apply Theorem 1.11 for dimension d ´ 1 ě 3. We obtain some ȳ “ Tapx̄q P

TapĒq, where x̄ P Ē, such that

|∆ȳ
pĒq| “ |∆Tapx̄q

pĒq| ą 0.

By the key observation (2) in Subsection 2.1,

|∆
´ x̄`ā

2p|x̄|2`adq pĒq| ą 0 ùñ |Πpx̄,|x̄|2q`a
pEq| ą 0.

The proof for d ě 4 is complete.

4 Sharpness of our result

4.1 Why the case d “ 2 is not considered

We do not study the case d “ 2 because the method we use would lead us to work with

the pinned distance problem in Rd´1 “ R1. However, there exists a counterexample of a
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compact set E Ă R1 with Hausdorff dimension 1, whose distance set has zero Lebesgue

measure.

Moreover, we now show that there exists a compact subset E Ă P2 “ tpx, x2q : x P

Ru with dimH E “ 1 but |ΠpEq| “ 0. First, observe that for px, x2q, py, y2q P P2, where

x, y P R,

px, x2
q ¨ py, y2q “ xy ` x2y2 “

ˆ

xy `
1

2

˙2

´
1

4
.

Let F be a compact subset of R with dimH F “ 1 but |ΠpF q| “ 0 (such an example

indeed exists). We define E as follows:

E :“ tpx, x2
q : x P F u.

Note that dimH E “ dimH F “ 1, and since ΠpF q has zero Lebesgue measure, so does

ΠpEq. Since dimH P2 “ 1, this is the largest possible threshold. However, this is still

insufficient to guarantee that compact subsets of P2 have dot product sets of positive

Lebesgue measure.

Remark. Although we can construct a counterexample on the standard parabola P2,

we are uncertain whether counterexamples exist on other translated parabolas pa1, a2q`

P2. By ”counterexamples,” we mean compact subsets of pa1, a2q ` P2 with Hausdorff

dimension 1 whose dot product set has zero Lebesgue measure.

4.2 A näıve counterexample on Pd

In this subsection, we construct an example of a compact subset of the standard

paraboloid Pd. When constructing counterexamples of sets that have large dimension

but also possess a distance (resp. dot product) set of measure zero, there are very few

available methods. The most classical approach is to consider lattice points and their

approximations, as lattice points exhibit many repeated distances and dot products.

Note that the first d´ 1 coordinates determine the last coordinate on Pd. Therefore, it

is natural to consider lattice points in Rd´1 and project the set onto Pd Ă Rd. However,

this approach only yields the exponent d´1
4

as we shall see below.

Fix s P p0, 1{2q. Let tqku8
k“1 be a sequence that satisfies qk`1 ą qkk . For each k P N,

define

Es,qk :“

"

px1, . . . , xd´1q P r0, 1s
d´1 : Dni P Z such that

ˇ

ˇ

ˇ

ˇ

xi ´
ni

qk

ˇ

ˇ

ˇ

ˇ

ď q
´1{s
k , @1 ď i ď d ´ 1

*

and set Es “
Ş

kPN Es,qk . Follow the argument in Theorem 8.15 in Falconer’s book [5],

one can verify that dimH E “ spd ´ 1q. We define a compact subset Fs of Pd by

Fs :“ tpx̄, |x̄|
2
q : x̄ P Esu.
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Clearly, we have dimH Fs “ spd ´ 1q. Now, by appropriately controlling s, we can

ensure that |ΠpFsq| “ 0. The key question is: how large can s be while still ensuring

|ΠpFsq| “ 0?

Through direct calculations, for any two points px̄, |x̄|2q and pȳ, |ȳ|2q P Fs, where

x̄, ȳ P Es, their dot product lies in a C1q
´1{s
k -neighborhood of a lattice point of the form

n
q4k

, where C1 is independent of k, and n P Z is within an admissible range since both

Es and Fs are bounded. This implies that ΠpFsq is contained in a union of ď C2q
4
k

intervals of length ď C1q
´1{s
k . Therefore, we conclude that when s ă 1{4, ΠpFsq has

measure zero.

To summarize, for every ε ą 0, we can find a compact subset F of Pd such that

dimH F ą
d ´ 1

4
´ ε, but |ΠpF q| “ 0.

Remark. Compared with Proposition 1.5, which provides a counterexample for dot

products in Rd, we can see that this construction yields a suboptimal exponent due

to the square in the last coordinate, which arises from the algebraic formula of the

paraboloid. Without the square in the last coordinate, we would only need to consider

lattice points of the form n
q2k

, where n P Z. Consequently, we would only require ď C2q
2
k

intervals of length ď C1q
´1{s
k to cover the dot product set (where C2 is also independent

of k). This would suffice for s ă 1{2, leading to a better exponent.

4.3 Another counterexample on Pd

In this subsection, we assume d ě 5 and use an alternative method to construct a

compact subset F Ă Pd of dimension d´3
2

´ ε whose dot product set has measure zero.

Roughly speaking, we consider the set

tpx̄, |x̄|
2
q : |x̄|

2
“ 1u “ tpx̄, 1q : |x̄|

2
“ 1u.

When analyzing the size of the dot product set in Rd, we may ignore the influence of the

last coordinate. Focusing on the first d´1 coordinates, we observe that this set forms a

pd´2q-dimensional sphere centered at the origin in Rd´1. Furthermore, the dot product

on the sphere is, in a sense, equivalent to the distance, which is translation-invariant.

To proceed, we will make use of the following intersection theorem (which can be

found in Chapter 7.2 of Mattila’s book [8]) to guarantee the existence of a compact

subset whose dot product set (distance set) has measure zero.

Theorem 4.1. Suppose 0 ă s ă d, 0 ă t ă d, s` t ą d, and t ą pd` 1q{2. If A,B are

Borel subsets of Rd with HspAq ą 0 and HtpBq ą 0, then for θd-almost every g P Opdq,

Ld
ptz P Rd : dimH A X pτz ˝ gqpBq ě s ` t ´ duq ą 0,
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where θd is the Haar measure on Opdq and τz is the translation map by the vector

z P Rd.

Remark. The reason for assuming d ě 5 is that we let B “ Sd´2 Ă Rd´1 and t “ d´2.

On the other hand, the theorem also requires that t ą ppd´ 1q ` 1q{2. Combining these

two conditions, we obtain d ą 4, which is equivalent to d ě 5 since d P N.

Now, we construct the desired counterexample. For every sufficiently small ε ą 0, we

can construct a compact subset E of Rd´1 such that dimH E ą d´1
2

´ε and |∆pEq| “ 0.

By setting the dimension as d´1, choosing A “ E, B “ Sd´2, s “ d´1
2

´ε, and t “ d´2

(s ` t ą pd ´ 1q is satisfied), we apply Theorem 4.1 and obtain that for θd´1-almost

every g P Opd ´ 1q,

Ld´1

ˆ"

z P Rd´1 : dimH E X pτz ˝ gqpSd´2
q ě

d ´ 1

2
´ ε ´ 1

*˙

ą 0.

Observe that g P Opd ´ 1q preserves the sphere and that the Hausdorff dimension

is translation-invariant. Hence, we conclude that there exists some z P Rd´1 such that

dimHpτ´zpEq X Sd´2
q ě

d ´ 3

2
´ ε.

Taking F̄ “ τ´zpEq X Sd´2, we see that F̄ is a compact subset of Sd´2 Ă Rd´1 with

dimension at least d´3
2

´ ε, and since its distance set satisfies |∆pF̄ q| ď |∆pτ´zpEqq| “

|∆pEq| “ 0, it follows that |ΠpF̄ q| “ 0. Finally, defining

F :“ tpx̄, 1q | x̄ P F̄ Ă Sd´2
Ă Rd´1

u,

we obtain a compact subset of Pd with dimension at least d´3
2

´ ε and a dot product

set of measure zero.

Remark. In the previous subsection, we constructed a compact subset of Pd with

dimension at least d´1
4

´ ε and a dot product set of measure zero. In this subsection,

we show that there “exists” a compact subset of Pd with dimension at least d´3
2

´ε and

a dot product set of measure zero. It appears that the latter provides a considerably

larger exponent than the former for large d. However, it is important to contrast that

the former is an explicit construction, whereas we only establish the “existence” of the

latter.

4.4 Counterexamples on translated paraboloids

In the previous two subsections, we constructed counterexamples on the standard

paraboloid Pd. In this subsection, we assume d ě 4 and consider translations of Pd and
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demonstrate the existence of a set J Ă Rd with LdpJq ą 0 such that for each a P J ,

there exists a compact subset Fa of a ` Pd with dimension at least d´2
2

´ ε and a dot

product set of measure zero.

The key insight is the intersection theorem (Theorem 4.1). Again, let E be a

compact subset of Rd such that dimH E ą d
2

´ ε and |ΠpEq| “ 0. By setting A “

E, B “ Pd, s “ d
2

´ε, and t “ d´1 (both the conditions s` t ą d and t ą pd`1q{2 are

satisfied) and by applying Theorem 4.1, we conclude that for θd-almost every g P Opdq,

Ld

ˆ"

a P Rd : dimHpE X pτa ˝ gqpPdqq ě
d

2
´ ε ´ 1 “

d ´ 2

2
´ ε

*˙

ą 0.

Fix any g P Opdq satisfying the above condition. Note that τa ˝ g “ g ˝ τg´1a and

that g P Opdq preserves the Lebesgue measure Ld, which imply

Ld

ˆ"

a P Rd : dimHpE X pg ˝ τaqpPdqq ě
d ´ 2

2
´ ε

*˙

ą 0.

Define the set J Ă Rd by

J :“

"

a P Rd : dimHpE X pg ˝ τaqpPdqq ě
d ´ 2

2
´ ε

*

“

"

a P Rd : dimHpg´1
pEq X pa ` Pdqq ě

d ´ 2

2
´ ε

*

.

By definition, LdpJq ą 0. Moreover, for each a P J , define Fa “ g´1pEq X pa ` Pdq. By

construction, dimH Fa ě d´2
2

´ ε and |ΠpFaq| ď |Πpg´1pEqq| “ |ΠpEq| “ 0.

Remark. Although the intersection theorem guarantees the existence of some coun-

terexamples, it is noteworthy that applying the theorem results in the loss of 1 dimension

in the exponent, corresponding to the codimension of a pd ´ 1q-dimensional hypersur-

face. We believe this dimensional loss is excessive, suggesting that counterexamples

with larger dimension might be achievable. Additionally, we cannot precisely localize

the points a for which a`Pd carries pd´2
2

´ εq-dimensional counterexamples. However,

we do know that such points exist in abundance, as the set of such points a has positive

measure.

5 Comparison with the discrete case and conjecture

5.1 Comparison with the discrete case

In [1], Che-Jui Chang, Ali Mohammadi, Thang Pham, and Chun-Yen Shen proved that

assuming the extension conjecture, for an admissible dimension d and a prime power q,
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if E is a subset of

Pd “ tpx1, . . . , xdq : xd “ x2
1 ` ¨ ¨ ¨ ` x2

d´1u Ă Fd
q ,

with |E| " q
d
2

´ 1
2d , then |ΠpEq| " q.

In our paper, we prove—without assuming the extension conjecture—that for every

a P Rd and every compact set E Ă a ` Pd, if the Hausdorff dimension of E is greater

than d
2

´ 1
4

for d “ 3, or greater than d
2

´ 1
4

´ 1
8d´4

for d ě 4, then |ΠpEq| ą 0. The key

ingredient in our proof are the pinned distance results in Euclidean space, which rely

on the decoupling method.

Regarding negative results, the authors in [1] proved that for admissible d, q and any

ε ą 0, there exists a subset E Ă Pd such that |E| « q
d´1
2

´ε and |ΠpEq| « q1´ε “ opqq.

In our paper, we show that for any ε ą 0, there exists a compact set E Ă Pd such that

dimH E ě max

ˆ

d ´ 3

2
´ ε, 1

˙

and |ΠpEq| “ 0. Here, for 3 ď d ď 5, we can embed the counterexample in Subsection

4.1 into higher-dimensional paraboloids and derive the exponent 1, while for d ě 6,

we have the
`

d´3
2

´ ε
˘

-construction. The reason why the finite field version achieves a

better bound is that there exist many nonzero vectors in Fd
q that are mutually orthog-

onal. For a more precise statement, one can refer to Lemma 5.1 in Derrick Hart, Alex

Iosevich, Doowon Koh, and Misha Rudnev’s paper [7]. In contrast, in Euclidean space,

no nonzero vector is self-orthogonal.

5.2 Conjecture

Falconer distance conjecture states that if E Ă Rd is a compact set with Hausdorff

dimension greater than d
2
, then its distance set ∆pEq has positive Lebesgue measure.

There is an even stronger pinned version conjecture, which conjectures that dimH E ą d
2

guarantees the existence of some x P E such that |∆xpEq| ą 0.

Remember that in our previous discussion, both S and D give the exponent d´1
2

.

Moreover, the conjectured sharp exponent for the pinned distance problem is d
2
. Recall

that we apply the pinned distance results in one lower dimension when dealing with

dot product on paraboloids. Note that the exponent from S and D and that from the

sharp pinned distance problem in one lower dimension are equal to d´1
2

. Therefore, if

the pinned distance conjecture is true, then for every translation vector a P Rd and

every compact subset E Ă a ` Pd with dimension greater than d´1
2

, |ΠpEq| ą 0. Based

on the coincidence and the counterexample in finite fields obtained in [1], we conjecture

that for every a P Rd and every compact subset E Ă a ` Pd with dimH E ą d´1
2

, there

exists x P E such that |ΠxpEq| ą 0.
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