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1 Introduction

We know that a compact Riemann surface is determined by its Jacobian variety, known

as the Torelli theorem. The Torelli theorem holds for curves over an arbitrary ground

field k, this may be found in the appendix by J-P.Serre [1].

As a generalization of the Torelli theorem in higher differential forms, Royden proved

in [2] that a Riemann surface can be determined by a norm ∥ · ∥ on the vector space

quadratic differentials H0(X,K⊗2
X ), where the norm is defined by

∥α∥ :=

∫
X

|α|.

I found out that the proof could be generalized to p-adic integral over a p-adic field

and the estimation would be easier than the proof in [2]. However, a p-adic field is not

algebraically closed, so there will be some argument on counting points that is different

from the case over the complex numbers. Let K be a p-adic field and let OK be the ring

of integers. For a smooth projective curve X over OK , we define a norm ∥ · ∥K on the

space of r-differential forms VK = H0(X,K⊗r
X ) by

∥α∥K =

(∫
X(OK)

|α|1/r
)r

.

The main result is

Theorem 1.1. Let X and X ′ be smooth projective curves over a OK of genus g ≥ 3,

r ≥ 2 a positive integer, V , V ′ the spaces H0(X,K⊗r
X ), H0(X ′, K⊗r

X′ ), respectively. Let

Φ : (V (K), ∥ · ∥K) → (V ′(K), ∥ · ∥′K)

be an isometry. Suppose that the residue field of K has more than 4g2 elements. Then

there is an isomorphism φ : X ′ → X and some u ∈ O×
K such that Φ = u · φ∗

K .
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2 p-adic norms

For a p-adic field K, let

• OK = {x ∈ K | |x| ≤ 1} be the ring of integers,

• mK = {x ∈ K | |x| < 1} = (πK) the maximal ideal of OK ,

• v : K× → Z the valuation on K, and

• Fq = OK⧸mK
the residue field.

Fix a positive integer r. Let X be a smooth projective curve over OK requiring X(K)

to be nonempty, it follows from the valuative criterion for properness [4] that

X(OK) = X(K) ̸= ∅.

We have defined a norm ∥ · ∥K on the space of differential r-forms VK = H0(X,K⊗r
X ) by

∥α∥K =

(∫
X(OK)

|α|1/r
)r

.

The following proposition gives some information about the “smoothness” of the normed

space (VK , ∥ · ∥K).

Proposition 2.1. Let α, β ∈ VK \ {0}, (α)0 = n1P1 + · · · + nℓPℓ the zero of α and let

N = max{n1, . . . , nℓ}.

(i) We have

∥α + tβ∥K − ∥α∥K = O(|t|1/N+1/r).

(ii) If N = n1 > ni for all i > 1, then we can choose β so that ∥α+ tβ∥K − ∥α∥K is not

O(|t|ρ) for any

ρ >
1

N
+

1

r
.

Proof. If we define

∥α∥ =

∫
X

|α|1/r,

note that

∥α + tβ∥ − ∥α∥ = O(|t|ρ) ⇐⇒ ∥α + tβ∥K − ∥α∥K = O(|t|ρ)
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for any ρ > 0 since ∥α∥ > 0. So it suffices to estimate

∥α + tβ∥ − ∥α∥.

For a zero of α, say P , write

α(u) =
(
anu

n + an+1u
n+1 + · · ·

)
dur, an ̸= 0

β(u) =
(
bmu

m + bm+1u
m+1 + · · ·

)
dur, bm ̸= 0

locally in a neighborhood of P (with P = 0). Take ε small enough so that the expressions

converge in BP (ε). Then we can take ε smaller so that

|an| > |an+ku
k|, |bm| > |bm+ku

k|

for all k ≥ 1 and u ∈ BP (ε) and that BP (ε) are pairwise disjoint for all zero P . Then we

take t small enough so that |α + tβ| = |α| outside these P ’s neighborhoods. For |t| ≪ 1,

we get

∥α + tβ∥ − ∥α∥ =

∫
X

|α + tβ|1/r − |α|1/r =
∑
i

∫
BPi

(ε)

|α + tβ|1/r − |α|1/r.

So for (i) and (ii) it suffices to show that∫
BPi

(ε)

|α + tβ|1/r − |α|1/r = O(|t|1/r+1/ni)

In BP (ε),

|α(u)| = |an||u|n dur, |β(u)| = |bm||u|m dur.

If m ≥ n, we get

|α(u) + tβ(u)|1/r − |α(u)|1/r = 0 ∀u ∈ BP (ε)

for |t| < |am|/|bn|. If m < n, let

δ =

(
|t||bm|
|an|

)1/(n−m)

,

we get

|(α + tβ)(u)|1/r − |α(u)|1/r

du
=


0, if |u| > δ

?, if |u| = δ

(|t||bm||u|m)1/r − (|an||u|n)1/r, if |u| < δ.
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Thus, ∫
BP (ε)

|α + tβ|1/r − |α|1/r =
∫
|u|=δ

|α + tβ|1/r − |α|1/r

+

∫
|u|<δ

(|t||bm||u|m)1/r − (|an||u|n)1/r du.

Let q−(s+1) < δ ≤ q−s, we get

B =

∫
|u|<δ

(|t||bm||u|m)1/r − (|an||u|n)1/r du

= |t|1/r|bm|1/r
(q − 1)q−(s+1)(1+m/r)

q − q−m/r
− |an|1/r

(q − 1)q−(s+1)(1+n/r)

q − q−n/r
.

We see that (
|t||bm|
|an|

)1/(n−m)

≤ q−s ≤
(
|t||bm|
|an|

)1/(n−m)

· q1−1/(n−m),

so

B = O(|t|(1+n/r)/(n−m))

and not O(|t|ρ) for ρ > (1 + n/r)/(n−m). In fact, when n = 1, m = 0,

B =

(
q1/r − 1

q1+1/r − 1
· |bm|

1+1/r

|an|

)
|t|1+1/r,

and when n > 1,

B = (q − 1)

(
(y/q)1+m/r

q − q−m/r
− (y/q)1+n/r

q − q−n/r

)(
(|t||bm|)(1+n/r)/(n−m)

|an|(1+m/r)/(n−m)

)
,

where

y = q{
v(tbm/an)

n−m } ∈ [1, q).

Note that n > m implies that

1− q−(1+n/r)

1− q−(1+m/r)
> 1 >

(
y

q

)(n−m)/r

=⇒ (y/q)1+m/r

q − q−m/r
− (y/q)1+n/r

q − q−n/r
> 0.

It is much harder to compute

A =

∫
|u|=δ

|α(u) + tβ(u)|1/r − |α(u)|1/r,

but it is obvious that A = O(|t|(1+n/r)/(n−m)) by the same reason.

So we get ∫
BP (ε)

|α + tβ|1/2 − |α|1/2 = A+B = O(|t|(1+n/r)/(n−m)).
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This proves (i). If v(tbm) ̸≡ v(an) (mod (n−m)), we have A = 0. When n−m > 1, this

shows that ∫
BP (ε)

|α + tβ|1/2 − |α|1/2 = A+B

is not O(|t|ρ) for any

ρ >
1 + n/r

n−m

by taking t such that v(tbm) ̸≡ v(an) (mod (n −m)). Suppose that N = n1 > ni for all

i > 1, note that

dimL(rK) = (r + 1)(g − 1) > (r + 1)(g − 1)− 1 = dimL(rK − P1)

for r > 1 and

dimL(rK) = g > g − 1 = L(rK − P1)

for r = 1 by Riemann-Roch theorem, so L(rK − P1) ⫋ L(rK). We simply take

β ∈ L(rK) \ L(rK − P1)

so that m = 0 and get (ii). ■

Remark. We give an estimate of A when v(tbm) ≡ v(an) (mod (n − m)) requiring

n−m < p. We know that on |u| = δ,

|α(u) + tβ(u)|
dur

≤ |α(u)|
dur

and the inequality is strict if and only if

0 ≡ α(u) + tβ(u)

dur
≡ anu

n + tbmu
m (mod m

v(tbmδm)+1
K )

⇐⇒
(
u

πs
K

)(n−m)

≡ x := −tbm
an

π−s(n−m) (mod mK).

Since n−m < p, by Hensel’s lemma, for each z ∈ mK there exists a unique |u| = δ such

that (
u

πs
K

)(n−m)

= x+ z = z − tbm
an

π−s(n−m) ⇐⇒ anu
n + tbmu

m = zanπ
s(n−m).
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Let U = #{u0 ∈ Fq | un−m
0 = x}, we get

A = U · δ
q
· |an|1/rδn/r

[
(1− q−1)(q−1/r − 1) + (q−1 − q−2)(q−2/r − 1) + · · ·

+ O

(
max
k≥1

max
ß∣∣∣∣an+k

an

∣∣∣∣ , ∣∣∣∣bm+k

bm

∣∣∣∣™ δk)]
= U |an|1/2δ1+n/2

(
1− q1/r

q1+1/r − 1

)
(1 +O(δ)),

= U

(
1− q1/r

q1+1/r − 1

)
(1 +O(|t|1/(n−m)))

(
(|t||bm|)(1+n/r)/(n−m)

|an|(1+m/r)/(n−m)

)
.

If n = 1, we get U = 1, so

A+B = O(|t|2+1/r).

When N = 1, this gives a sharper estimate

∥α + tβ∥K − ∥α∥K = O(|t|2+1/r).

3 Dual r-canonical curve

Let X be a curve over Qp of genus g ≥ 3, V = H0(X,K⊗r
X ). We have the r-canonical

embedding

ϕ = |rK| : X → P(V )∨

when r ≥ 2 or X non-hyperelliptic. We define the dual r-canonical map

ψ : X → P(V )

by sending P ∈ X to the osculating hyperplane HP ∈ P(V ) of ϕ(X) at ϕ(P ). Explicitly,

write V = ⟨α1, . . . , αm⟩Qp
, where

m = dimV =

(r + 1)(g − 1), if r > 1

g, if r = 1,

we get

ϕ(P ) = [α1(P ) : · · · : αm(P )].

The osculating hyperplane HP is

[
⟨ϕ(P ), ϕ′(P ), . . . , ϕ(k)(P )⟩Qp

]
= ker


α1(P ) · · · αm(P )

... . . . ...

α
(k)
1 (P ) · · · α

(k)
m (P )

 ∈ P(V )
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for some k. If we take α so that ordP (α) is maximal (which is unique up to a scalar,

otherwise h0(rK − (ordP (α) + 1)P ) ≥ 2 − 1 = 1), then α(P ) = · · · = α(k)(P ) = 0 and

hence we get HP = [α]. Since

h0(rK − (m− 1)P ) ≥ m− (m− 1) = 1,

we have ordP (α) ≥ m− 1. If r > 1, it follows from

2(m− 1) > r(2g − 2) = deg rKX ⇐⇒ g > 2

that ψ is injective. If r = 1 and ψ(P ) = ψ(Q) with P , Q distinct, then

KX = (g − 1)P + (g − 1)Q,

so ψ is either a generically injecitve map or a 2 − 1 map. If ψ is 2 − 1, then for generic

P ∈ X, there’s another point Q ∈ X such that

KX = (g − 1)P + (g − 1)Q.

Theorem 3.1. Let X be an algebraic curve over a characteristic 0 field of genus g, and

let Q be a grd on X, i.e., a linear system on X of degree d, with r = dimQ. Then∑
P∈X

wP (Q) = (r + 1)(d+ rg − r),

where

wP (Q) =
r+1∑
i=1

(ni − i),

and n1 < n2 < · · · < nr+1 denote the gap numbers. In particular, there are only finitely

many P ∈ X such that Q(−(r + 1)P ) ̸= ∅.

The proof of the theorem may be found in [3]. Apply the this to the case Q = |rKX | =

gm−1
r(2g−2), we see that |2K − dP | = ∅ and hence ordP (ψ(P )) = m − 1 for generic P ∈ X.

We call P an r-Weierstrass point if ordP (ψ(P )) ≥ m. Let

W = {P ∈ X | ordP (ψ(P )) ≥ m}

be the set of r-Weierstrass points. For P ∈ W , let

LP = {[α] ∈ P(V ) | ordP (α) ≥ m− 1},

then ψ(P ) ∈ LP .
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Lemma 3.2. The dual r-canonical curve ψ(X) is not contained in any hyperplane of

P .

Proof. Let H be a hyperplane of P(V ), then H is a gm−2
r(2g−2). Then (3.1) shows that there

are only a finite number of points of X at which there is an [α] ∈ H with a zero of order

at least m− 1. Thus the dual r-canonical curve is not contained in H. ■

4 Proof of the main result

Let

S = {[α] ∈ P(V ) | ∃P ∈ X s.t. ordP (α) ≥ m− 1} ⊆ P(V ),

then it is clear that

S = ψ(X) ∪
⋃

P∈W

LP .

Define θ : S → X by sending α ∈ S to the unique point P ∈ X such that ordP (α) ≥ m−1.

Then θ ◦ ψ = idX and θ−1(P ) is always a linear space (of dimension ≥ 1 if and only if

P ∈ W ).

From (2.1) we see that the set S(K) is the set of those [α] for which there is β ∈ VK

so that

∥α + tβ∥K − ∥α∥K

is not O(|t|ρ) for any ρ > 1
2
+ 1

m−1
.

Proposition 4.1. Let X and X ′ be smooth projective curves over OK of genus g ≥ 3,

r a positive integer, V , V ′ the spaces H0(X,K⊗r
X ), H0(X ′, K⊗r

X′ ), respectively, and let

Φ : (V (K), ∥ · ∥K) → (V ′(K), ∥ · ∥′K)

be an isometry. Suppose that q > 4g2 and ψ, ψ′ are injective (which is always true for

r ≥ 2). Then there is an isomorphism φK : X ′
K → XK and some u ∈ O×

K such that

Φ = u · φ∗
K .

Proof. From q > 4g2 we get q + 1 > 2g
√
q. It follows from the Riemann hypothesis for

curves [4] that X(Fq) are nonempty. Consider the mod mK-reduction

h : X(OK) → X(Fq).
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For any x ∈ X(Fq), the preimage h−1(x) of x in X(OK) is isomorphic to m in K-analytic

sense, hence X(K) = X(OK) (by the valuative criterion for properness) contains infinitely

many points. Similarly, X ′(K) contains infinitely many points.

Since Φ is an isometry, S(K) sends to S ′(K) under the linear map Φ : P(V (K))
∼−→

P(V ′(K)). Extend Φ to ΦQp
: P(V )

∼−→ P(V ′), we may assume that S, S ′ are contained in

the same projective space P3g−4 and we have

C(K) ∪
⋃

P∈W

LP (K) = S(K) = S ′(K) = C ′(K) ∪
⋃

P ′∈W ′

LP ′(K),

where C = ψ(X), C ′ = ψ′(X ′). By (3.2),

|C ′ ∩ LP | <∞ =⇒ |C ′(K) ∩ LP (K)| <∞.

Then |X ′(K)| = ∞ gives |C(K) ∩ C ′(K)| = ∞ and hence |C ∩ C ′| = ∞, thus C = C ′

since they are both irreducible. Therefore,

φQp
= θ ◦ Φ−1

Qp
◦ ψ′ : X ′

Qp
→ XQp

is an isomorphism. Since φQp
is defined over K, we get an isomorphism φK : X ′

K → XK .

Since Φ = φ∗
K , we get Φ = u ·φ∗

K for some u ∈ K. Then |u| = 1 since both Φ and φ∗
K are

isometries. ■

Using the following theorem, stated in [5], we can prove that the isomorphism φK :

X ′
K → XK lifts to an isomorphism φ : X ′ → X. This is also an arithmetic version of the

theorem stated in [6].

Theorem 4.2. Let (R,m) be a discrete valuation ring with the quotient field K; let V

and W be smooth projective varieties, defined over K, and T the graph of an isomorphism,

defined over K, between V and W . Let X (resp. Y ) be an ample divisor on V (resp. W ),

both rational over K, such that Y = T (X). Let

(V,W,X, Y, T ) → (V ′,W ′, X ′, Y ′, T ′)

be the mod m-reduction and assume that V ′, W ′ are smooth and that X ′ (resp. Y ′) is

also ample on V ′ (resp. W ′). Then T ′ is the graph of an isomorphism between V ′ and

W ′, if one of the V ′, W ′ is not ruled.
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5 Future work

The proof above only works for g ≥ 3 and q > 4g2. For g = 2, the dual r-canonical would

be a P1 with 6 Weierstrass point on it. Since K is not algebraically closed, the Weierstrass

points may not be K-rational. A way to solve this is to take an extension K ⊂ L, so that

the Weierstrass points are L-rational and try to compare the norms ∥ · ∥K and ∥ · ∥L. If

we can compare the norms ∥ · ∥K and ∥ · ∥L, we can also take an extension so that the

condition q > 4g2 is satisfied.
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