Characterizing algebraic curves using p-adic norms

Shuang-Yen Lee

1 Introduction

We know that a compact Riemann surface is determined by its Jacobian variety, known
as the Torelli theorem. The Torelli theorem holds for curves over an arbitrary ground
field k, this may be found in the appendix by J-P.Serre [1].

As a generalization of the Torelli theorem in higher differential forms, Royden proved
in [2] that a Riemann surface can be determined by a norm || - || on the vector space

quadratic differentials H°(X, K$?), where the norm is defined by

|mwz/hw
X

I found out that the proof could be generalized to p-adic integral over a p-adic field
and the estimation would be easier than the proof in [2]. However, a p-adic field is not
algebraically closed, so there will be some argument on counting points that is different
from the case over the complex numbers. Let K be a p-adic field and let Ok be the ring
of integers. For a smooth projective curve X over Ok, we define a norm || - || on the

space of r-differential forms Vi = HY(X, KY") by

nmmz(/ mwﬁ.
X(Ok)

The main result is

Theorem 1.1. Let X and X’ be smooth projective curves over a O of genus g > 3,

r > 2 a positive integer, V', V' the spaces H*(X, K¢"), H'(X', K§), respectively. Let
(VK - lx) = (V) - %)

be an isometry. Suppose that the residue field of K has more than 4¢? elements. Then

there is an isomorphism ¢ : X’ — X and some u € O such that & = u - ¢J,.
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2 p-adic norms
For a p-adic field K, let
e« Ok ={z € K| |z| <1} be the ring of integers,
e mig ={z € K| |z| <1} = (7mg) the maximal ideal of Ok,
e v: K* — 7Z the valuation on K, and
e F, = OK/mK the residue field.

Fix a positive integer r. Let X be a smooth projective curve over Ok requiring X (K)

to be nonempty, it follows from the valuative criterion for properness [4] that
X(0x) = X(K) £ .

We have defined a norm || - ||x on the space of differential r-forms Vi = H*(X, K§") by

n@mz(/ mwﬁ.
X(Ok)

The following proposition gives some information about the “smoothness” of the normed

space (Vic, || - [|x)-

Proposition 2.1. Let o, € Vi \ {0}, (a)o = ni Py + - - - + ng Py the zero of a and let

N = max{nq,...,ng}.

(i) We have
lar+ 8]k — lledll e = Ot/ ¥ 7).

(ii) If N =ny > n; for all i > 1, then we can choose 8 so that ||+ t8]|x — |||k is not
O(]t|?) for any
1

1
> — —.
p N+7"

muzéﬁwm

le + 5] = llafl = O(t]") == lla+ 18]k — llallx = O(|t]*)

Proof. 1f we define

note that
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for any p > 0 since ||a|| > 0. So it suffices to estimate
lev + 5] = flx]]-
For a zero of «, say P, write

a(u) = (4" + anou™ + -2 ) du”, a4, # 0
Bu) = (byt™ + bypru™ 4 ) du”, by, # 0

locally in a neighborhood of P (with P = 0). Take ¢ small enough so that the expressions

converge in Bp(e). Then we can take ¢ smaller so that

|an| > |an+kuk|a |bm| > |bm+kuk|

for all £ > 1 and u € Bp(e) and that Bp(e) are pairwise disjoint for all zero P. Then we
take t small enough so that |a + t3]| = || outside these P’s neighborhoods. For [t| < 1,

we get

||a+t5||—||a||=/ !a+tﬁ|1/’"—|0z|1/”22/ e+ £V — Ja]".
X i B

P; (e)

So for (i) and (ii) it suffices to show that
/ |a + tﬁll/r _ |a|1/r _ O<|t|1/r+1/ni>
Bp, (€)

In Bp(€),

|a(u)| = lan[ul" du",  [B(u)] = [bp||ul™ du".

If m > n, we get

la(u) + tB()| " — |a(w)['" =0 Yu € Bp(e)

1B, [\ M)
o (H)
[

0, if |u| >0

for [t| < |am|/|bn|. If m < n, let

we get

1/r _ 1/r
o+ BN = ot _ ], if ful = 5

([#11bm [l™) 7 = (lanlful™) M7, if fu] <o

\



Thus,

/ la + B[V — |alV/r =/ o+ tB1Y — |V
Bp(e) |u|=4
T / (el ™) — (lanlla]™)V" du.
|u|<d
Let ¢+t < § < 7%, we get

B =/ ([t [ul ™" = (] Ju])"" du
|u|<d

— 1)q*(s+1)(1+m/r) Ca ‘l/r (q— 1)q7(s+1)(1+n/r)

¢—q g—q

1/(n—m 1/(n—m
<|t|||br|n|) T < <|t|||bT|) g
A, - - Ay, 7

B = O([t|t+m/m)/(n=m)y

_ |t|1/r|bm|1/r (q

We see that

SO

and not O(|t|?) for p > (1 +n/r)/(n —m). In fact, when n =1, m =0,

B— ( ql/r -1 ) |bm|1+1/T) |t‘1+1/r
ql—l—l/r -1 | n| ’

and when n > 1,

B=(q—1) (@/ Q" <y/q>1+”/r) (<|t||bm|><1+n/r>/<nm>) |

q— q—m/r q— q—n/r |an|(1+m/r)/(n—m)

where

U(ibm/an) } c

y=ql [1,q).

Note that n > m implies that

1— —(14n/r) (n—=m)/r 1+m/r 1+n/r
q . <y> . W9 _ W/

> 0.
g—q g

It is much harder to compute

= a(u w)| M — Je(u) V"
A= [ Jatw) < 80P~ fowl

but it is obvious that A = O(|t|(*+™/"/("=m)) by the same reason.

So we get
/ |oz+t6|1/2 . |Oz‘1/2 _ A+ B = O(|t|(1+n/T)/(n_m)).
Bp(e)

4



This proves (i). If v(tb,,) # v(a,) (mod (n —m)), we have A = 0. When n —m > 1, this
shows that

/ a+ 82— |a['2 = A+ B
BP(E)

is not O(]t|?) for any

1+n/r
>
n—m

by taking ¢ such that v(tb,,) # v(a,) (mod (n —m)). Suppose that N = n; > n; for all

¢ > 1, note that
dmL(rK)=(r+1)(g—1)>(r+1)(g—1) -1 =dimL(rK — P)

for r > 1 and

dmL(rK)=g>g—1=L(rK — P)

for r = 1 by Riemann-Roch theorem, so L(rK — P;) & L(rK). We simply take
peL(rK)\Lrk — pP)
so that m = 0 and get (ii). [

Remark. We give an estimate of A when v(tb,,) = v(a,) (mod (n — m)) requiring

n—m < p. We know that on |u| = 4§,

jaw) + 15(w)] _ Ja(u)
dur — dur

and the inequality is strict if and only if

t -
0= —a(u);rﬂ(u) = a,u" + thyp,u™  (mod mK(tbm(s Y
(n—m)
b,
= (is) =1 :=——277°"™  (mod mg).
5 ap

Since n — m < p, by Hensel’s lemma, for each z € my there exists a unique |u| = ¢ such

that

u \ ™ t
(—) —2r4z=2— 2770 — g u" + thu™ = za,7 ™.

T Qn,



Let U = #{uy € F, | uig™™ =z}, we get
0 — —1/r — - —2/r
AIUE‘!%I”W"” [(1—q S VR (e [ (/A VSRR

)]

1— 1/r
= Ul 2000 (5 ) (1 0,

q1+1ﬂ‘__
L N 8 o
—U<;ﬂ7tj)“*4xm D\ o jarmmra )

Ifn=1,weget U=1,so

@n+k

An4k
Y bm

G

+ O (max max {

k>1

A+ B = O(|t]*/n).

When N =1, this gives a sharper estimate

loc+ 8llxc — llllxc = O(JE[*7).

3 Dual r-canonical curve

Let X be a curve over @p of genus g > 3, V = H%(X,K%"). We have the r-canonical
embedding
¢=rK|: X = P(V)Y

when r > 2 or X non-hyperelliptic. We define the dual r-canonical map
Y X = P(V)

by sending P € X to the osculating hyperplane Hp € P(V') of ¢(X) at ¢(P). Explicitly,

write V = (aq, . .. ,am)@p, where
r+1)(g—1), ifr>1
m=dmV = ( ) )
qg, if r=1,
we get
O(P) = [ar(P) : -+ : am(P)].
The osculating hyperplane Hp is
&1(fn an]))
[(6(P),(P),..., 0" (Pg | =ker | & i | eBW)
o (P) - al(P)



for some k. If we take « so that ordp(«) is maximal (which is unique up to a scalar,
otherwise h(rK — (ordp(a) + 1)P) > 2 —1 = 1), then a(P) = --- = a®(P) = 0 and

hence we get Hp = [a]. Since
R(rK —(m—-1DP)>m—(m—1)=1,
we have ordp(a) > m — 1. If » > 1, it follows from
2(m —1) > r(29g —2) =degrKx <= g > 2
that v is injective. If r = 1 and ¢(P) = ¢(Q) with P, @ distinct, then
Kx=(9-1)P+(9-1)Q,

so 1 is either a generically injecitve map or a 2 — 1 map. If ¢ is 2 — 1, then for generic

P € X, there’s another point Q € X such that
Kx =(g—1DP+(g—1Q.

Theorem 3.1. Let X be an algebraic curve over a characteristic 0 field of genus g, and

let @ be a g on X, i.e., a linear system on X of degree d, with r = dim ). Then

Y wp(Q) = (r+1)(d+rg—r),

Pex
where
r+1
wp(Q) =Y (n; — i),
i=1
and n; < ny < --- < n,41 denote the gap numbers. In particular, there are only finitely

many P € X such that Q(—(r + 1)P) # .

The proof of the theorem may be found in [3]. Apply the this to the case Q@ = |rKx| =

9:22_9172)» we see that |2K — dP| = @ and hence ordp(¢)(P)) = m — 1 for generic P € X.

We call P an r-Weierstrass point if ordp(¢(P)) > m. Let
W ={PeX|ordp(¥(P)) > m}
be the set of r-Weierstrass points. For P € W let
Lp ={[a] e P(V) | ordp(ar) > m — 1},

then ¢(P) € Lp.



Lemma 3.2. The dual r-canonical curve ¥ (X) is not contained in any hyperplane of

P.

Proof. Let H be a hyperplane of P(V'), then H is a gfggz_m. Then (3.1) shows that there
are only a finite number of points of X at which there is an [a] € H with a zero of order

at least m — 1. Thus the dual r-canonical curve is not contained in H. [ |

4 Proof of the main result

Let
S={[la] e P(V)| 3P € X s.t. ordp(a) >m —1} CP(V),

then it is clear that

S=¢X)u (] Lp.

PeWw

Define § : S — X by sending a € S to the unique point P € X such that ordp(a) > m—1.
Then 0 o+ = idy and §71(P) is always a linear space (of dimension > 1 if and only if
PeW).

From (2.1) we see that the set S(K) is the set of those [a] for which there is § € Vi
so that

lo-+ 25k = llell &

is not O([t|?) for any p > 1 4+ —=.

Proposition 4.1. Let X and X’ be smooth projective curves over O of genus g > 3,

r a positive integer, V, V' the spaces H(X, KY"), HY(X', K%), respectively, and let
@ (VE), ||~ lx) = (VI(E), [ - [Ik)

be an isometry. Suppose that ¢ > 4¢g* and v, 1’ are injective (which is always true for
r > 2). Then there is an isomorphism ¢x : X} — Xk and some u € Of such that

O =u- .

Proof. From q > 4¢® we get ¢ +1 > 2g,/q. It follows from the Riemann hypothesis for

curves [4] that X (F,) are nonempty. Consider the mod mg-reduction
h:X(Ok)— X(F,).
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For any T € X(F,), the preimage h™*(Z) of T in X (Of) is isomorphic to m in K-analytic
sense, hence X (K) = X(Ok) (by the valuative criterion for properness) contains infinitely
many points. Similarly, X’(K') contains infinitely many points.

Since ® is an isometry, S(K) sends to S’(K) under the linear map ® : P(V(K)) =
P(V'(K)). Extend ® to 5@ :P(V) = P(V’), we may assume that S, S” are contained in

the same projective space P39~ and we have

C(K) U | Le(K) = S(K) = S(K) = C'(K)U | Lo(K),

Pcw Pew’

where C' = ¢(X), C' =¢'(X’). By (3.2),
|IC'"N Lp| < 0o = |C'(K)N Lp(K)| < .

Then |X'(K)| = oo gives |C(K) N C'(K)| = oo and hence |C N C'| = oo, thus C' = C’

since they are both irreducible. Therefore,
——1
pg, =00 g, OWIX@ — Xg,

is an isomorphism. Since ©g, is defined over K, we get an isomorphism ¢g : X — Xg.
Since ® = B}, we get ® = u - % for some u € K. Then |u| = 1 since both ® and % are

isometries. [}

Using the following theorem, stated in [5], we can prove that the isomorphism @ :
X — Xk lifts to an isomorphism ¢ : X’ — X. This is also an arithmetic version of the

theorem stated in [6].

Theorem 4.2. Let (R,m) be a discrete valuation ring with the quotient field K; let V'
and W be smooth projective varieties, defined over K, and T" the graph of an isomorphism,
defined over K, between V and W. Let X (resp. Y) be an ample divisor on V' (resp. W),
both rational over K, such that Y = T(X). Let

VWX, Y. T) — (VW X" Y'. T

be the mod m-reduction and assume that V', W’ are smooth and that X’ (resp. Y’) is
also ample on V' (resp. W’). Then 7" is the graph of an isomorphism between V' and
W', if one of the V', W' is not ruled.



5 Future work

The proof above only works for ¢ > 3 and ¢ > 4¢%. For g = 2, the dual r-canonical would
be a P! with 6 Weierstrass point on it. Since K is not algebraically closed, the Weierstrass
points may not be K-rational. A way to solve this is to take an extension K C L, so that
the Weierstrass points are L-rational and try to compare the norms || - ||x and || - ||p. If
we can compare the norms || - || and || - ||z, we can also take an extension so that the

condition ¢ > 4¢? is satisfied.
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